Plus.Maths.org

icon

Physics in a minute: The double slit experiment

double slit experiment as

One of the most famous experiments in physics is the double slit experiment. It demonstrates, with unparalleled strangeness, that little particles of matter have something of a wave about them, and suggests that the very act of observing a particle has a dramatic effect on its behaviour.

To start off, imagine a wall with two slits in it. Imagine throwing tennis balls at the wall. Some will bounce off the wall, but some will travel through the slits. If there's another wall behind the first, the tennis balls that have travelled through the slits will hit it. If you mark all the spots where a ball has hit the second wall, what do you expect to see? That's right. Two strips of marks roughly the same shape as the slits.

In the image below, the first wall is shown from the top, and the second wall is shown from the front.

Double slit

The pattern you get from particles.

Now imagine shining a light (of a single colour, that is, of a single wavelength) at a wall with two slits (where the distance between the slits is roughly the same as the light's wavelength). In the image below, we show the light wave and the wall from the top. The blue lines represent the peaks of the wave. As the wave passes though both slits, it essentially splits into two new waves, each spreading out from one of the slits. These two waves then interfere with each other. At some points, where a peak meets a trough, they will cancel each other out. And at others, where peak meets peak (that's where the blue curves cross in the diagram), they will reinforce each other. Places where the waves reinforce each other give the brightest light. When the light meets a second wall placed behind the first, you will see a stripy pattern, called an interference pattern . The bright stripes come from the waves reinforcing each other.

Double slit

An interference pattern.

Here is a picture of a real interference pattern. There are more stripes because the picture captures more detail than our diagram. (For the sake of correctness, we should say that the image also shows a diffraction pattern , which you would get from a single slit, but we won't go into this here, and you don't need to think about it.)

Double slit

Image: Jordgette , CC BY-SA 3.0 .

Now let's go into the quantum realm. Imagine firing electrons at our wall with the two slits, but block one of those slits off for the moment. You'll find that some of the electrons will pass through the open slit and strike the second wall just as tennis balls would: the spots they arrive at form a strip roughly the same shape as the slit.

Now open the second slit. You'd expect two rectangular strips on the second wall, as with the tennis balls, but what you actually see is very different: the spots where electrons hit build up to replicate the interference pattern from a wave.

Double slit

Here is an image of a real double slit experiment with electrons. The individual pictures show the pattern you get on the second wall as more and more electrons are fired. The result is a stripy interference pattern.

Double slit

Image: Dr. Tonomura and Belsazar , CC BY-SA 3.0

How can this be?

One possibility might be that the electrons somehow interfere with each other, so they don't arrive in the same places they would if they were alone. However, the interference pattern remains even when you fire the electrons one by one, so that they have no chance of interfering. Strangely, each individual electron contributes one dot to an overall pattern that looks like the interference pattern of a wave.

Could it be that each electrons somehow splits, passes through both slits at once, interferes with itself, and then recombines to meet the second screen as a single, localised particle?

To find out, you might place a detector by the slits, to see which slit an electron passes through. And that's the really weird bit. If you do that, then the pattern on the detector screen turns into the particle pattern of two strips, as seen in the first picture above! The interference pattern disappears. Somehow, the very act of looking makes sure that the electrons travel like well-behaved little tennis balls. It's as if they knew they were being spied on and decided not to be caught in the act of performing weird quantum shenanigans.

What does the experiment tell us? It suggests that what we call "particles", such as electrons, somehow combine characteristics of particles and characteristics of waves. That's the famous wave particle duality of quantum mechanics. It also suggests that the act of observing, of measuring, a quantum system has a profound effect on the system. The question of exactly how that happens constitutes the measurement problem of quantum mechanics.

Further reading

  • For an extremely gentle introduction to some of the strange aspects of quantum mechanics, read Watch and learn .
  • For a gentle introduction to quantum mechanics, read A ridiculously short introduction to some very basic quantum mechanics .
  • For a more detailed, but still reasonably gentle, introduction to quantum mechanics, read Schrödinger's equation — what is it?

Originally published on 05/02/2017.

  • Log in or register to post comments

Double slit experiment

The scientist at Washington University found that quasimeasurements cause the zeno effect possibly explaining why the particles do not form a interference pattern if one detects which slit they pass through.

double slit experiment

Seem to be leaving out the fact that the difference occurs when being actively observed.

Heisenberg uncertainty principle

Everything we see is our brain "interpreting" the photons of light reflected off a object. Just like our brains turns 30 FPS and up into a smooth video image. Any experiment that has the word "Observation" in it is flawed. A human used as test equipment for the observation part of a experiment can never be accurate.

It has nothing to do with a human observing anything. It has to do with how one observes things at the atomic and quantum scale. We make these observations by bouncing other particles off of the particles we're interested in examining. At the macro-scale this is not a problem as the particles were bounce off of things are much smaller and have little no affects at the macro.

But at the atomic and smaller scales, the particles we bounce off of things to observe them are similar in "size" (this is a stand in for mass, charge, etc.) to the particles we are trying to observe.

You can think of it like trying to figure out where a billiard ball is by bouncing a golf ball it. That will change the position, spin, etc. of the billiard ball.

I agree with you. Yet, seemingly, the rest of the world either believes - when they do not believe what you've just said - humans have a psychic grip on subatomic particles, or this proves a God exists.

Why not both?

I believe both, and agree with both of you. The two dont have to be mutually exclusive... It actually makes for a more narrow view that way.

Leave room for more

I agree. What we don't know is much greater than what we do and much of what we think we know will change. I think it's best to leave room for many possibilities. Magic is just science undiscovered. If we keep placing boundaries on what's possible and teach others to ignore something for lack of explanations, scientific discovery suffers.

The two slit experiment

The duality of the particle has nothing to do with proving a god exists, just that science is indeterminate and is a duality of possible existences dependent on the observation of a consciousness. Seems like its human consciousness that determines the outcome not any god.

This isn't actually true either. Experiments have shown that even if the photon used to make an observation is of low enough energy that it doesn't alter a large molecules trajectory much, the interference pattern still disappears.

Also, null interaction experiments have been done in which there is no contact between particles at all. But if info about which slit can be found, the interference pattern disappears.

Source for that?

Hey, do you have a source on finding information about which slit with out active observation causing the interference pattern to not appear?

Information on the Double Split experiment

Try QED: The Strange Theory of Light and Matter by Richard P. Feynman. It's been a while since I've enjoyed this book, but my recollection is that it covered the topic well.

Thank you! I didn’t think that explanation made sense, since any effect upon the particle being observed would surely be taken into account in these experiments…and because the detection unit (which “catches” the electrons passing through either slit) doesn’t work by shooting particles at them, as far as I know…even if it did, that wouldn’t be ignored as a variable or whatever…right? I assume such interaction isn’t the method of detection anyway; how the materials used in the experiment could potentially influence the subject being measured is exactly what they control for, among other things- the environment itself, the actions taken as it is conducted and how conditions change…etc. I just don’t think what the commenter described is true since, well, I’d assume the researchers would know that sort of thing could skew the results & therefore lead to an incorrect conclusion. Scientists aren’t just straight up missing the impact of what would be such an obvious flaw in these experiments. I mean, in general they either eliminate the possibility of their tools affecting what they’re measuring OR they take that into account as a variable. Usually the second one is only possible if it’s something that like…as long as it’s known, it won’t render their data useless…if that makes sense (so being aware that it is a factor is key) Anyway…

yet this works at the molecular level too

Molecules are much larger than photons, yet you get the same result.

Quantum Games

If a player has two attached low emission lasers either side of head, beamed through a double slit screen at, say, a home movie or scenario created by the player, bounces back as photons via player's retina to the player's neurons, will player perceive or believe he/she is part of the home movie?

Are you Sure?

Placing only 1 detector in front of one of the double slits ALSO collapses the wave function of both slits. This unequivocally proves that it isn’t the measurement method, but the ACT of measurement itself.

For example, we get the wave pattern. We place a detector in front of both holes we then get 2 bands. ..now, if it were the detector interfering as you mentioned, we will take 1 detector away and leave the other. This way only 1 slit has a detector that interacts with the electron as it passes through.

This would mean the slit with the detector produces a band while the slit without the detector produces a partial striped pattern of the wave.

This is not what we observe however. Measuring just 1 slit still causes 2 bands.

This is because even measuring just 1 slit gives us information on the other. It’s the information that is seemingly the cause of the collapse of the wave function.

Process of Elimination

Hello, I like your idea of removing one detector to see if there is a tangible difference. Given how complex the science behind this is, it doesn't seem ethical to have a biased conclusion with such conviction after just 1 adjustment.

Why has no one tried 3,4,5 slits? With those slits, why haven't we tried removing one detector at a time, and swapping out different ones for each slit? Speeding up or slowing down the particle beam? There are so many variables that could lead to comprehensible evidence if the results are as consistent to previous attempts.

However, it just seems this experiment was done 60 years ago and then we just left it as is with no additional input or further experimentation; just copy paste imitations doing the same thing for educational purposes of the original experiment. That just becomes a history lesson, not a science one.

I come here after watching a conspiracy theory and they referenced this experiment as the leading evidence that we live in a simulation, that the universe is just a projection controlled by a program that detects when its being observed like when a video game detects the players position and renders in whats necessary around them. Suggesting that the light particles can bend the rules of physics and time as soon as someone attempts to measure them.

My initial reaction is not to believe this, however I fully appreciate a rebuttal to come armed with objective, comprehensible evidence like any good debate where possible.

I think this experiment needs a make over and we need to breathe new life into it with far more variables to play with, leaving no stone unturned to draw a general trend and any potential outliers to help solve this once and for all. Or at least, as close as our minds will allow us.

We are our own limitations.

Re: Process of Elimination

I agree with you, the whole furore around this experiment has made it more of a history lesson. It's become almost like the Galileo stone/feather thing; i've had people tell me that in normal every-day circumstances, if i dropped a pen and a pebble at exactly the same moment, they would hit the floor at the same time. Even, when i demonstrate this live, people are still adamant in their stance; after-all, i'm no better than Galileo.

This represents a great discrepancy to the original format of experiment by Galileo. I think some of these experiments have been so popularised in pop-culture and pop-science that people have ruled out the possibility of questioning them. Just like the Galileo stone and feather thing, Everyone is still quoting the same concept from decades ago without any iota of desire to question it. This means that some of these science-cum-history concepts are left to grow into "unquestionables" filled with errors.

I think its about time we re-visit the whole premise of this experiment. Let's introduce 3,4, or even 10 slits! Let's do it today with more control over the variables. We can't let this become another one of the "unquestionables". We can't adopt beliefs and never question them. That would be disastrously dogmatic. The opposite of what it means to do real science!

Also, what was the youtube video you watched? thanks

Uh...no. That is definitely not what happens. If so, there would be no conceptual problem. But don't take my word for it. Here's what Richard Feynman said: “I think I can safely say that nobody really understands quantum mechanics." That's because QM seems to suggest that there's a real connection between the mind of the observer and the results obtained. Also, you're not taking into account the results of the quantum eraser phenomenon, which is another aspect of this experiment that suggests the trajectory of an electron in the past can be altered by an experimenter's actions in the present. You'll have to look it up as it's rather lengthy.

Impact of measuring

Thank you so much for this explanation! We have been fretting about this for quite a while. I wish this physical interaction were more clearly included in other explanations of the slit experiment or just quantum mechanics and general

Question for you

You’re saying to observe a particle we’re bouncing particles off of that observed particle? I don’t think that’s the case. What exactly is bouncing off the particle being observed? How is it being directed toward the target particle? With the way they design these experiments, as far as I know, there should be no overt effect like that- certainly not the actual impact of matter as you’re describing. I don’t think anything is being expelled from the detection materials. Or if it were, that would be taken into account- so precise calculations would be made about how it should impact the results. Basically, if something physical was being intentionally shot at the particles and that somehow was the way we detected them, then the scientists performing the research would do that math using specific measurements (including the mass of that projectile matter). I mean if there was anything being directed toward the electrons or whatever, they’d surely have an idea of what forces it would exert and the interaction it should have, etc… Now you could say the electron being observed has some effect upon the detection unit itself (the “quantum observer”) because logically, in order to even register the electron’s presence/position, it must. But I believe that by all known science, there shouldn’t be any effect upon the particle being observed- other than the fact that it’s being observed. That’s kind of the whole point and is exactly what makes this discovery so mind-blowing…right? So I would assume that in these experiments, they’re controlling for those conditions (the observation device having any physical effect or exerting force upon the observed electron, and all possible variables). Do you disagree? I am genuinely curious about what you’re asserting!

What if there are smaller units than photons, which are presently invisible to our instruments? We'll call them units of consciousness (or thought) that we as conscious beings emanate without knowing it, and it is these very tiny units of consciousness (relative to the photon) that influence the photons to behave as they do. In other words the invisible is influencing the visible like the soul influences the body. These same units could explain the placebo effect.

curtesy call

I agree to your theory. Just want to point it out there as a suggestion to proof read your work before submitting it. I have I found a couple of mistakes where a word had been left out.

Curtesy call

I thought it was well thought out and written. Has it been edited since your comment? If we're being semantic you may wish to check your spelling of courtesy.

Objective observation, unlike subjective observation, is very much allowed in conducting data in experiments.

Plus, unless you have robots conducting the experiment ans/or collecting the data, humans are going to be involved.

observer does not need to be human!

A houseplant would work too. Humans cannot see at this level in any case. Machinery is used, and humans don't have to be in the room for the effects to continue. Observation just means measurement, and Wheeler's Delayed Choice and the Quantum Eraser experiments showed the measurement can occur after the photon, electron, or molecule has hit the wall...and it will still change.

This word is used for convenience, but no conscious observer is required. You can also say “detected”. And by detected what is meant is that information exists that is, in principal, detectable even if not yet technically feasible. Look up “The World’s Smallest Double-Slit Experiment” (2007) and you will find that a single low-energy electron can be an “observer” and collapse the quantum interference pattern of a high-energy electron exiting a single hydrogen molecule.

This is BS. When being observed by a sensor, electrons behave as particles. You lack sufficient understanding of the double slit experiment.

A summarily dismissal of a complex phenomenon that has world class physicists, accompanied by a " You don't understand" line illustrates a simple mind

Deeper understanding is to look at our process of observation.

Everything we recieve through our sences gets interpreted in our brains as being solid, founded by rules/laws/logic & most importantly being OUTSIDE our bodies, ie, being real. Reality is though, that these words you now read, are IN your head as is ALL experiences. Point being, WHY are we being TRICKED to think we are experiencing life OUTSIDE our heads when in fact, we are experiencing life IN our heads, just a observation.

Slit Experiment

The only reason a human may not be good test equipment for observation would be because the person lacks awareness. Human observation can be as accurate as any mechanical scientific devise. It just depends on the awareness of the individual.

by detector , they mean, not human but mechanical

Double Split Experiment

"Seem to be leaving out the fact that the difference occurs when being actively observed" EXACTLY!! This experiment shows that matter is not what we think it is. Scientists have known this for a century yet scientific materialism for some reason still prevails. Matter is a product of Mind. NOT the other way around. For more information read "Ontological Mathematics"

That is not what comes out

That is not what comes out this. "Observer" is a misleading term. It does not specifically refer to humans, nor even conscious creatures, although they can be.

About what you wrote

I do agree with you

double slit Hijinx

Ive noticed this trend everywhere. I chock it up to the materialists clinging to their dead ideology

What happens as the distance between the slits becomes greater ? Is there a relationship between the distance between the slits, and the distance of the source from the slits??

Double slit

What if the light is reacting to the material the slits were cut out from. Maybe electromagnetism causing the light particles to bend and change their direction just like how planets and comets change their orbits when passing near something with mass.

The double slits, are on the

The double slits, are on the both sides of the direction of the flow of light. Also, the slit will be more massive on the two outer edges of the double slits. If it were to be hindered due to presence of slits, wouldn't the effect be more on the outer edges and not on the inner edges, i.e. in the middle.

Double Slit

Such is the problem. Particles don't bend when acted upon by electromagnetic fields. They simply form a trajectory. Bending or warping is the property of a wave. Their trajectory could be altered but I'm sure the material is neutral in all aspects to avoid interference.

Electrons have almost no mass and therefore almost no gravity. Atoms of the slit have a huge mass compared to the electrons. As the electrons passes the slit the gravity of the atoms cause some of the closest electrons to start to spin, the same way water spins when shot through a slit. This spin then sends some of the electrons out of their normal straight line trajectory which causes the apparent wave effect.

If that were the case it would happen if there was only one slit. But it doesn't.

Doesn't bend when "observed".

Electrons spin.

Electrons always have a spin of 1/2. This is a fundemental property of electrons and all fermions. Even if electrons were pushed off their trajectory, how do electrons shot one at a time form an interference pattern?

Because it behaves like wave regardless by itself or by groups

When you say wave, do you mean as in bye bye?

Running paint

If light passes through two slits and it reflects off a object that photon leaves some of itself behind and continues on as if you put paint on your hand and slap a wall then run, how many walls you slap depends on how much paint you got, when light reflects off the object or the slit where does it go is it passing through itself or is it colliding with itself in that direction and handing itself some extra light to continue like say you been running with paint on your hand and you have a train of people that follow you and you are the leader. What if you grab just a finger swap of paint for that extra inch foot mile etc. so when the rays reflects off the rectangle will that rectangle of photons continue colliding into each other and handing itself more photons or snatching some to create a another rectangle and so on till it fades away.

agree with Chris Isaacson

I also thought the materials used may have properties that interfere, and the detector might too.

How does the detector itself work? Does it not rely on an intrinsic property of electrons to function? Connecting the detector to that property then necessarily interferes with the experiment. That interference is then to be expected and can be explained rationally rather than through a spooky effect, quantum effect.

Light/Photon/Electron/Particle interacting with slit material

Agree with you. Details of double/single slit experiments should give more information on the slits material, their dimensions (gap width and distance between slits) and the probability of these materials influencing the path/direction of WAVICLES (waves-cum-particles!). This topic needs to discussed and debated.

  • Science, Tech, Math ›

Young's Double Slit Experiment

The Original Experiment

  • Physics Laws, Concepts, and Principles
  • Quantum Physics
  • Important Physicists
  • Thermodynamics
  • Cosmology & Astrophysics
  • Weather & Climate

double slit experiment as

  • M.S., Mathematics Education, Indiana University
  • B.A., Physics, Wabash College

Throughout the nineteenth century, physicists had a consensus that light behaved like a wave, in large part thanks to the famous double slit experiment performed by Thomas Young. Driven by the insights from the experiment, and the wave properties it demonstrated, a century of physicists sought out the medium through which light was waving, the luminous ether . Though the experiment is most notable with light, the fact is that this sort of experiment can be performed with any type of wave, such as water. For the moment, however, we'll focus on the behavior of light.

What Was the Experiment?

In the early 1800s (1801 to 1805, depending on the source), Thomas Young conducted his experiment. He allowed light to pass through a slit in a barrier so it expanded out in wave fronts from that slit as a light source (under Huygens' Principle ). That light, in turn, passed through the pair of slits in another barrier (carefully placed the right distance from the original slit). Each slit, in turn, diffracted the light as if they were also individual sources of light. The light impacted an observation screen. This is shown to the right.

When a single slit was open, it merely impacted the observation screen with greater intensity at the center and then faded as you moved away from the center. There are two possible results of this experiment:

Particle interpretation: If light exists as particles, the intensity of both slits will be the sum of the intensity from the individual slits.
Wave interpretation: If light exists as waves, the light waves will have interference under the principle of superposition , creating bands of light (constructive interference) and dark (destructive interference).

When the experiment was conducted, the light waves did indeed show these interference patterns. A third image that you can view is a graph of the intensity in terms of position, which matches with the predictions from interference.

Impact of Young's Experiment

At the time, this seemed to conclusively prove that light traveled in waves, causing a revitalization in Huygen's wave theory of light, which included an invisible medium, ether , through which the waves propagated. Several experiments throughout the 1800s, most notably the famed Michelson-Morley experiment , attempted to detect the ether or its effects directly.

They all failed and a century later, Einstein's work in the photoelectric effect and relativity resulted in the ether no longer being necessary to explain the behavior of light. Again a particle theory of light took dominance.

Expanding the Double Slit Experiment

Still, once the photon theory of light came about, saying the light moved only in discrete quanta, the question became how these results were possible. Over the years, physicists have taken this basic experiment and explored it in a number of ways.

In the early 1900s, the question remained how light — which was now recognized to travel in particle-like "bundles" of quantized energy, called photons, thanks to Einstein's explanation of the photoelectric effect — could also exhibit the behavior of waves. Certainly, a bunch of water atoms (particles) when acting together form waves. Maybe this was something similar.

One Photon at a Time

It became possible to have a light source that was set up so that it emitted one photon at a time. This would be, literally, like hurling microscopic ball bearings through the slits. By setting up a screen that was sensitive enough to detect a single photon, you could determine whether there were or were not interference patterns in this case.

One way to do this is to have a sensitive film set up and run the experiment over a period of time, then look at the film to see what the pattern of light on the screen is. Just such an experiment was performed and, in fact, it matched Young's version identically — alternating light and dark bands, seemingly resulting from wave interference.

This result both confirms and bewilders the wave theory. In this case, photons are being emitted individually. There is literally no way for wave interference to take place because each photon can only go through a single slit at a time. But the wave interference is observed. How is this possible? Well, the attempt to answer that question has spawned many intriguing interpretations of  quantum physics , from the Copenhagen interpretation to the many-worlds interpretation.

It Gets Even Stranger

Now assume that you conduct the same experiment, with one change. You place a detector that can tell whether or not the photon passes through a given slit. If we know the photon passes through one slit, then it cannot pass through the other slit to interfere with itself.

It turns out that when you add the detector, the bands disappear. You perform the exact same experiment, but only add a simple measurement at an earlier phase, and the result of the experiment changes drastically.

Something about the act of measuring which slit is used removed the wave element completely. At this point, the photons acted exactly as we'd expect a particle to behave. The very uncertainty in position is related, somehow, to the manifestation of wave effects.

More Particles

Over the years, the experiment has been conducted in a number of different ways. In 1961, Claus Jonsson performed the experiment with electrons, and it conformed with Young's behavior, creating interference patterns on the observation screen. Jonsson's version of the experiment was voted "the most beautiful experiment" by  Physics World  readers in 2002.

In 1974, technology became able to perform the experiment by releasing a single electron at a time. Again, the interference patterns showed up. But when a detector is placed at the slit, the interference once again disappears. The experiment was again performed in 1989 by a Japanese team that was able to use much more refined equipment.

The experiment has been performed with photons, electrons, and atoms, and each time the same result becomes obvious — something about measuring the position of the particle at the slit removes the wave behavior. Many theories exist to explain why, but so far much of it is still conjecture.

  • Wave Particle Duality and How It Works
  • Can Quantum Physics Be Used to Explain the Existence of Consciousness?
  • Interference, Diffraction & the Principle of Superposition
  • Using Quantum Physics to "Prove" God's Existence
  • De Broglie Hypothesis
  • History of the Michelson-Morley Experiment
  • Quantum Physics Overview
  • Erwin Schrödinger and the Schrödinger's Cat Thought Experiment
  • EPR Paradox in Physics
  • What You Should Know About Electronics and Electricity
  • Fundamental Physical Constants
  • Everything You Need to Know About Bell's Theorem
  • What Is Blackbody Radiation?
  • Top 10 Weird but Cool Physics Ideas
  • Heinrich Hertz, Scientist Who Proved Existence of Electromagnetic Waves
  • Quantum Entanglement in Physics

Reset password New user? Sign up

Existing user? Log in

Double-slit Experiment

Already have an account? Log in here.

Plane wave representing a particle passing through two slits, resulting in an interference pattern on a screen some distance away from the slits. [1] .

The double-slit experiment is an experiment in quantum mechanics and optics demonstrating the wave-particle duality of electrons , photons , and other fundamental objects in physics. When streams of particles such as electrons or photons pass through two narrow adjacent slits to hit a detector screen on the other side, they don't form clusters based on whether they passed through one slit or the other. Instead, they interfere: simultaneously passing through both slits, and producing a pattern of interference bands on the screen. This phenomenon occurs even if the particles are fired one at a time, showing that the particles demonstrate some wave behavior by interfering with themselves as if they were a wave passing through both slits.

Niels Bohr proposed the idea of wave-particle duality to explain the results of the double-slit experiment. The idea is that all fundamental particles behave in some ways like waves and in other ways like particles, depending on what properties are being observed. These insights led to the development of quantum mechanics and quantum field theory , the current basis behind the Standard Model of particle physics , which is our most accurate understanding of how particles work.

The original double-slit experiment was performed using light/photons around the turn of the nineteenth century by Thomas Young, so the original experiment is often called Young's double-slit experiment. The idea of using particles other than photons in the experiment did not come until after the ideas of de Broglie and the advent of quantum mechanics, when it was proposed that fundamental particles might also behave as waves with characteristic wavelengths depending on their momenta. The single-electron version of the experiment was in fact not performed until 1974. A more recent version of the experiment successfully demonstrating wave-particle duality used buckminsterfullerene or buckyballs , the \(C_{60}\) allotrope of carbon.

Waves vs. Particles

Double-slit experiment with electrons, modeling the double-slit experiment.

To understand why the double-slit experiment is important, it is useful to understand the strong distinctions between wave and particles that make wave-particle duality so intriguing.

Waves describe oscillating values of a physical quantity that obey the wave equation . They are usually described by sums of sine and cosine functions, since any periodic (oscillating) function may be decomposed into a Fourier series . When two waves pass through each other, the resulting wave is the sum of the two original waves. This is called a superposition since the waves are placed ("-position") on top of each other ("super-"). Superposition is one of the most fundamental principles of quantum mechanics. A general quantum system need not be in one state or another but can reside in a superposition of two where there is some probability of measuring the quantum wavefunction in one state or another.

Left: example of superposed waves constructively interfering. Right: superposed waves destructively interfering. [2]

If one wave is \(A(x) = \sin (2x)\) and the other is \(B(x) = \sin (2x)\), then they add together to make \(A + B = 2 \sin (2x)\). The addition of two waves to form a wave of larger amplitude is in general known as constructive interference since the interference results in a larger wave.

If one wave is \(A(x) = \sin (2x)\) and the other is \(B(x) = \sin (2x + \pi)\), then they add together to make \(A + B = 0\) \(\big(\)since \(\sin (2x + \pi) = - \sin (2x)\big).\) This is known as destructive interference in general, when adding two waves results in a wave of smaller amplitude. See the figure above for examples of both constructive and destructive interference.

Two speakers are generating sounds with the same phase, amplitude, and wavelength. The two sound waves can make constructive interference, as above left. Or they can make destructive interference, as above right. If we want to find out the exact position where the two sounds make destructive interference, which of the following do we need to know?

a) the wavelength of the sound waves b) the distances from the two speakers c) the speed of sound generated by the two speakers

This wave behavior is quite unlike the behavior of particles. Classically, particles are objects with a single definite position and a single definite momentum. Particles do not make interference patterns with other particles in detectors whether or not they pass through slits. They only interact by colliding elastically , i.e., via electromagnetic forces at short distances. Before the discovery of quantum mechanics, it was assumed that waves and particles were two distinct models for objects, and that any real physical thing could only be described as a particle or as a wave, but not both.

In the more modern version of the double slit experiment using electrons, electrons with the same momentum are shot from an "electron gun" like the ones inside CRT televisions towards a screen with two slits in it. After each electron goes through one of the slits, it is observed hitting a single point on a detecting screen at an apparently random location. As more and more electrons pass through, one at a time, they form an overall pattern of light and dark interference bands. If each electron was truly just a point particle, then there would only be two clusters of observations: one for the electrons passing through the left slit, and one for the right. However, if electrons are made of waves, they interfere with themselves and pass through both slits simultaneously. Indeed, this is what is observed when the double-slit experiment is performed using electrons. It must therefore be true that the electron is interfering with itself since each electron was only sent through one at a time—there were no other electrons to interfere with it!

When the double-slit experiment is performed using electrons instead of photons, the relevant wavelength is the de Broglie wavelength \(\lambda:\)

\[\lambda = \frac{h}{p},\]

where \(h\) is Planck's constant and \(p\) is the electron's momentum.

Calculate the de Broglie wavelength of an electron moving with velocity \(1.0 \times 10^{7} \text{ m/s}.\)

Usain Bolt, the world champion sprinter, hit a top speed of 27.79 miles per hour at the Olympics. If he has a mass of 94 kg, what was his de Broglie wavelength?

Express your answer as an order of magnitude in units of the Bohr radius \(r_{B} = 5.29 \times 10^{-11} \text{m}\). For instance, if your answer was \(4 \times 10^{-5} r_{B}\), your should give \(-5.\)

Image Credit: Flickr drcliffordchoi.

While the de Broglie relation was postulated for massive matter, the equation applies equally well to light. Given light of a certain wavelength, the momentum and energy of that light can be found using de Broglie's formula. This generalizes the naive formula \(p = m v\), which can't be applied to light since light has no mass and always moves at a constant velocity of \(c\) regardless of wavelength.

The below is reproduced from the Amplitude, Frequency, Wave Number, Phase Shift wiki.

In Young's double-slit experiment, photons corresponding to light of wavelength \(\lambda\) are fired at a barrier with two thin slits separated by a distance \(d,\) as shown in the diagram below. After passing through the slits, they hit a screen at a distance of \(D\) away with \(D \gg d,\) and the point of impact is measured. Remarkably, both the experiment and theory of quantum mechanics predict that the number of photons measured at each point along the screen follows a complicated series of peaks and troughs called an interference pattern as below. The photons must exhibit the wave behavior of a relative phase shift somehow to be responsible for this phenomenon. Below, the condition for which maxima of the interference pattern occur on the screen is derived.

Left: actual experimental two-slit interference pattern of photons, exhibiting many small peaks and troughs. Right: schematic diagram of the experiment as described above. [3]

Since \(D \gg d\), the angle from each of the slits is approximately the same and equal to \(\theta\). If \(y\) is the vertical displacement to an interference peak from the midpoint between the slits, it is therefore true that

\[D\tan \theta \approx D\sin \theta \approx D\theta = y.\]

Furthermore, there is a path difference \(\Delta L\) between the two slits and the interference peak. Light from the lower slit must travel \(\Delta L\) further to reach any particular spot on the screen, as in the diagram below:

Light from the lower slit must travel further to reach the screen at any given point above the midpoint, causing the interference pattern.

The condition for constructive interference is that the path difference \(\Delta L\) is exactly equal to an integer number of wavelengths. The phase shift of light traveling over an integer \(n\) number of wavelengths is exactly \(2\pi n\), which is the same as no phase shift and therefore constructive interference. From the above diagram and basic trigonometry, one can write

\[\Delta L = d\sin \theta \approx d\theta = n\lambda.\]

The first equality is always true; the second is the condition for constructive interference.

Now using \(\theta = \frac{y}{D}\), one can see that the condition for maxima of the interference pattern, corresponding to constructive interference, is

\[n\lambda = \frac{dy}{D},\]

i.e. the maxima occur at the vertical displacements of

\[y = \frac{n\lambda D}{d}.\]

The analogous experimental setup and mathematical modeling using electrons instead of photons is identical except that the de Broglie wavelength of the electrons \(\lambda = \frac{h}{p}\) is used instead of the literal wavelength of light.

  • Lookang, . CC-3.0 Licensing . Retrieved from https://commons.wikimedia.org/w/index.php?curid=17014507
  • Haade, . CC-3.0 Licensing . Retrieved from https://commons.wikimedia.org/w/index.php?curid=10073387
  • Jordgette, . CC-3.0 Licensing . Retrieved from https://commons.wikimedia.org/w/index.php?curid=9529698

Problem Loading...

Note Loading...

Set Loading...

double slit experiment as

  • Why Does Water Expand When It Freezes
  • Gold Foil Experiment
  • Faraday Cage
  • Oil Drop Experiment
  • Magnetic Monopole
  • Why Do Fireflies Light Up
  • Types of Blood Cells With Their Structure, and Functions
  • The Main Parts of a Plant With Their Functions
  • Parts of a Flower With Their Structure and Functions
  • Parts of a Leaf With Their Structure and Functions
  • Why Does Ice Float on Water
  • Why Does Oil Float on Water
  • How Do Clouds Form
  • What Causes Lightning
  • How are Diamonds Made
  • Types of Meteorites
  • Types of Volcanoes
  • Types of Rocks

Double Slit Experiment

What is the double-slit experiment.

The double-slit experiment is a test that demonstrates light can fundamentally display both wave and particle features, also known as wave-particle ( photon ) duality. It consists of two closely-spaced slits in front of a light source such that a beam of light passing through them is split and projected on a screen placed far from the slits. The split beam forms two coherent sources of light. A pattern of bright and dark fringes appears on the screen due to the interference of light waves coming from these two sources. Interference is the phenomenon in which when waves are superimposed, they may reinforce or cancel each other out. It is most pronounced when the wavelength of the radiation is comparable to the linear dimensions of the slits.

double slit experiment as

The history of this experiment goes back to 1801 when British polymath Thomas Young demonstrated the wave nature of light and hence, is often called Young’s double-slit experiment.

Double-Slit Experiment Equation

A monochromatic light source falls on a screen that contains two parallel slits, which serve as the sources of coherent light. The light waves emerging from the two slits then interfere and form an interference pattern on the viewing screen. The bright fringes or bands correspond to interference maxima, and the dark fringes are interference minima.

To locate the fringes from the center of the screen, one assumes that the distance between the screen and slit is much greater than the distance separating the slits. Also, the separation between the slits is much greater than the wavelength of the monochromatic light.

By measuring the separation between the fringes and knowing the distance of the screen from the slits and distance between the two slits, it is possible to determine the wavelength of light.

double slit experiment as

Ans. The double-slit experiment was a groundbreaking test that decisively proves the theory that light behaves as a wave.

Ans . Yes. Many researchers have performed the double-slit experiment on electrons and found similar results to that of photons.

Article was last reviewed on Wednesday, June 3, 2020

Related articles

Fermi Dirac Distribution

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Popular Articles

double slit experiment as

Join our Newsletter

Fill your E-mail Address

Related Worksheets

  • Privacy Policy

© 2024 ( Science Facts ). All rights reserved. Reproduction in whole or in part without permission is prohibited.

  • IIT JEE Study Material
  • Youngs Double Slit Experiment

Young's Double Slit Experiment

What is young’s double slit experiment.

Young’s double slit experiment uses two coherent sources of light placed at a small distance apart. Usually, only a few orders of magnitude greater than the wavelength of light are used. Young’s double slit experiment helped in understanding the wave theory of light , which is explained with the help of a diagram. As shown, a screen or photodetector is placed at a large distance, ‘D’, away from the slits.

Download Complete Chapter Notes of Wave Optics Download Now

JEE Main 2021 LIVE Physics Paper Solutions 24 Feb Shift-1 Memory-based

JEE Main 2021 LIVE Physics Paper Solutions 24-Feb Shift-1

The original Young’s double slit experiment used diffracted light from a single source passed into two more slits to be used as coherent sources. Lasers are commonly used as coherent sources in modern-day experiments.

Youngs Double Slit Experiment image 1

Table of Contents

  • Position of Fringes
  • Shape of Fringes
  • Intensity of Fringes

Special Cases

  • Displacement of Fringes

Youngs Double Slit Experiment image 2

Each source can be considered a source of coherent light waves . At any point on the screen at a distance ‘y’ from the centre, the waves travel distances  l 1  and  l 2 to create a path difference of Δl at the point. The point approximately subtends an angle of θ at the sources (since the distance D is large, there is only a very small difference between the angles subtended at sources).

Derivation of Young’s Double Slit Experiment

Consider a monochromatic light source ‘S’ kept at a considerable distance from two slits: s 1 and s 2 . S is equidistant from s 1 and s 2 . s 1 and s 2 behave as two coherent sources as both are derived from S.

The light passes through these slits and falls on a screen which is at a distance ‘D’ from the position of slits s 1 and s 2 . ‘d’ is the separation between two slits.

If s 1 is open and s 2 is closed, the screen opposite to s 1 is closed, and only the screen opposite to s 2 is illuminated. The interference patterns appear only when both slits s 1 and s 2 are open.

Youngs Double Slit Experiment image 3

When the slit separation (d) and the screen distance (D) are kept unchanged, to reach P, the light waves from s 1 and s 2 must travel different distances. It implies that there is a path difference in Young’s double slit experiment between the two light waves from s 1 and s 2 .

Approximations in Young’s double slit experiment 

  • Approximation  1: D > > d: Since D > > d, the two light rays are assumed to be parallel.
  • Approximation  2:   d/λ >> 1:  Often, d is a fraction of a millimetre, and λ is a fraction of a micrometre for visible light.

Under these conditions, θ is small. Thus, we can use the approximation sin θ = tan θ ≈ θ = λ/d.

∴ path difference, Δz = λ/d

This is the path difference between two waves meeting at a point on the screen. Due to this path difference in Young’s double slit experiment, some points on the screen are bright, and some points are dark.

Now, we will discuss the position of these light and dark fringes and fringe width.

Position of Fringes in Young’s Double Slit Experiment

Position of bright fringes.

For maximum intensity or bright fringe to be formed at P,

Path difference, Δz = nλ (n = 0, ±1, ±2, . . . .)

i.e., xd/D = nλ

The distance of the n th   bright fringe from the centre is

x n = nλD/d

Similarly, the distance of the (n-1) th  bright fringe from the centre is

x (n-1) = (n -1)λD/d

Fringe width,  β =  x n   – x (n-1)  = nλD/d – (n -1)λD/d = λD/d

(n = 0, ±1, ±2, . . . .)

Position of Dark Fringes

For minimum intensity or dark fringe to be formed at P,

Path difference, Δz = (2n + 1) (λ/2) (n = 0, ±1, ±2, . . . .)

i.e., x = (2n +1)λD/2d

The distance of the n th   dark fringe from the centre is

x n = (2n+1)λD/2d

x (n-1) = (2(n-1) +1)λD/2d

Fringe width, β = x n   – x (n-1)  = (2n + 1) λD/2d – (2(n -1) + 1)λD/2d = λD/d

Fringe Width

The distance between two adjacent bright (or dark) fringes is called the fringe width.

If the apparatus of Young’s double slit experiment is immersed in a liquid of refractive index  (μ), then the wavelength of light and fringe width decreases ‘μ’ times.

If white light is used in place of monochromatic light, then coloured fringes are obtained on the screen, with red fringes larger in size than violet.

Angular Width of Fringes

Let the angular position of n th bright fringe is θ n, and because of its small value, tan θ n   ≈ θ n

Similarly, the angular position of (n+1) th bright fringe is θ n+1,  then

∴ The angular width of a fringe in Young’s double slit experiment is given by,

Angular width is independent of ‘n’, i.e., the angular width of all fringes is the same.

Maximum Order of Interference Fringes

But ‘n’ values cannot take infinitely large values as it would violate the 2 nd approximation.

i.e., θ is small (or) y < < D

When the ‘n’ value becomes comparable to d/ λ, path difference can no longer be given by d γ/D.

Hence for maxima, path difference = nλ

The above represents the box function or greatest integer function.

Similarly, the highest order of interference minima

The Shape of Interference Fringes in YDSE

From the given YDSE diagram, the path difference between the two slits is given by

The above equation represents a hyperbola with its two foci as, s 1 and s 2 .

Youngs Double Slit Experiment image 4

The interference pattern we get on the screen is a section of a hyperbola when we revolve the hyperbola about the axis s 1 s 2 .

If the screen is a yz plane, fringes are hyperbolic with a straight central section.

Youngs Double Slit Experiment image 5

If the screen is xy plane , the fringes are hyperbolic with a straight central section.

Youngs Double Slit Experiment image 6

The Intensity of Fringes in Young’s Double Slit Experiment

For two coherent sources, s 1 and s 2 , the resultant intensity at point p is given by

I = I 1 + I 2 + 2 √(I 1 . I 2 ) cos φ

Putting I 1 = I 2 = I 0  (Since, d<<<D)

I = I 0 + I 0 + 2 √(I 0 .I 0 ) cos φ

I = 2I 0 + 2 (I 0 ) cos φ

I = 2I 0 (1 +  cos φ)

For maximum intensity

phase difference   φ = 2nπ

Then, path difference \(\begin{array}{l}\Delta x=\frac{\lambda }{{2}{\pi }}\left( {2}n{\pi } \right)\end{array} \) = nλ

The intensity of bright points is maximum and given by

I max = 4I 0

For minimum intensity

φ = (2n – 1) π

Phase difference φ = (2n – 1)π

Thus, the intensity of minima is given by

If I 1 ≠ I 2 , I min ≠ 0.

Rays Not Parallel to Principal Axis:

Youngs Double Slit Experiment image 7

From the above diagram,

Using this, we can calculate different positions of maxima and minima.

Source Placed beyond the Central Line:

If the source is placed a little above or below this centre line, the wave interaction with S 1 and S 2 has a path difference at point P on the screen.

Youngs Double Slit Experiment image 8

Δ x= (distance of ray 2) – (distance of ray 1)

= bd/a + yd/D → (*)

We know Δx = nλ for maximum

Δx = (2n – 1) λ/2 for minimum

By knowing the value of Δx from (*), we can calculate different positions of maxima and minima .

Displacement of Fringes in YDSE

When a thin transparent plate of thickness ‘t’ is introduced in front of one of the slits in Young’s double slit experiment, the fringe pattern shifts toward the side where the plate is present.

Youngs Double Slit Experiment image 9

The dotted lines denote the path of the light before introducing the transparent plate. The solid lines denote the path of the light after introducing a transparent plate.

Where μt is the optical path.

Then, we get,

Term (1) defines the position of a bright or dark fringe; term (2) defines the shift that occurred in the particular fringe due to the introduction of a transparent plate.

Constructive and Destructive Interference

For constructive interference, the path difference must be an integral multiple of the wavelength.

Thus, for a bright fringe to be at ‘y’,

Or, y = nλD/d

Where n = ±0,1,2,3…..

The 0th fringe represents the central bright fringe.

Similarly, the expression for a dark fringe in Young’s double slit experiment can be found by setting the path difference as

Δl = (2n+1)λ/2

This simplifies to

(2n+1)λ/2 = y d/D

y = (2n+1)λD/2d

Young’s double slit experiment was a watershed moment in scientific history because it firmly established that light behaved like a wave.

The double slit experiment was later conducted using electrons , and to everyone’s surprise, the pattern generated was similar as expected with light. This would forever change our understanding of matter and particles, forcing us to accept that matter, like light, also behaves like a wave.

Wave Optics

Young’s double slit experiment.

double slit experiment as

Frequently Asked Questions on Young’s Double Slit Experiment

What was the concept explained by young’s double slit experiment.

Young’s double slit experiment helps in understanding the wave theory of light.

What are the formulas derived from Young’s double slit experiment?

For constructive interference, dsinθ = mλ , for m = 0,1,-1,2,-2

For destructive interference, dsinθ = (m+½)λ, for m = 0,1,-1,2,-2 Here, d is the distance between the slits. λ is the wavelength of the light waves.

What is called a fringe width?

The distance between consecutive bright or dark fringe is called the fringe width.

What kind of source is used in Young’s double slit experiment?

A coherent source is used in Young’s double slit experiment.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all JEE related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

double slit experiment as

Register with Aakash BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

IMAGES

  1. Double-Slit Experiment: Explanation, Diagram, and Equation

    double slit experiment as

  2. Young's double slit experiment diagram. Interference of light waves

    double slit experiment as

  3. 27.3 Young’s Double Slit Experiment

    double slit experiment as

  4. Thomas Young's Double Slit Experiment

    double slit experiment as

  5. Concept and realization of the double-slit diffraction experiment in

    double slit experiment as

  6. Young's Double Slit Experiment: A Simple Explanation

    double slit experiment as

COMMENTS

  1. Double-slit experiment

    In modern physics, the double-slit experiment demonstrates that light and matter can exhibit behavior of both classical particles and classical waves.This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. [1] In 1927, Davisson and Germer and, independently, George Paget Thomson and his research student Alexander Reid [2 ...

  2. What is the double-slit experiment, and why is it so important?

    The double-slit experiment actually predates quantum mechanics by a little more than a century. During the Scientific Revolution, the nature of light was a particularly contentious topic, ...

  3. The Double-Slit Experiment Cracked Reality Wide Open

    The double-slit experiment seems simple enough: Cut two slits in a sheet of metal and send light through them, first as a constant wave, then in individual particles. What happens, though, is anything but simple. In fact, it's what started science down the bizarre road of quantum mechanics.

  4. Physics in a minute: The double slit experiment

    Look up "The World's Smallest Double-Slit Experiment" (2007) and you will find that a single low-energy electron can be an "observer" and collapse the quantum interference pattern of a high-energy electron exiting a single hydrogen molecule. Log in or register to post comments;

  5. Thomas Young's Double Slit Experiment

    What Was the Experiment? In the early 1800s (1801 to 1805, depending on the source), Thomas Young conducted his experiment. He allowed light to pass through a slit in a barrier so it expanded out in wave fronts from that slit as a light source (under Huygens' Principle).That light, in turn, passed through the pair of slits in another barrier (carefully placed the right distance from the ...

  6. Young's double-slit experiment

    Young's double-slit experiment When monochromatic light passing through two narrow slits illuminates a distant screen, a characteristic pattern of bright and dark fringes is observed. This interference pattern is caused by the superposition of overlapping light waves originating from the two slits. Regions of constructive interference ...

  7. Double-slit Experiment

    The double-slit experiment is an experiment in quantum mechanics and optics demonstrating the wave-particle duality of electrons, photons, and other fundamental objects in physics. When streams of particles such as electrons or photons pass through two narrow adjacent slits to hit a detector screen on the other side, they don&#x27;t form clusters based on whether they passed through one slit ...

  8. Double-Slit Experiment: Explanation, Diagram, and Equation

    The double-slit experiment is a test that demonstrates light can fundamentally display both wave and particle features, also known as wave-particle duality. It consists of two closely-spaced slits in front of a light source such that a beam of light passing through them is split and projected on a screen placed far from the slits. The split ...

  9. Young's Double Slit Experiment

    Young's double slit experiment uses two coherent sources of light placed at a small distance apart. Usually, only a few orders of magnitude greater than the wavelength of light are used. Young's double slit experiment helped in understanding the wave theory of light, which is explained with the help of a diagram. As shown, a screen or ...

  10. Young's double-slit experiment

    The double-slit experiment in quantum mechanics is an experiment, which was first performed by physicist Thomas Young in 1801. It shows that light has both a wave nature or characteristic and a particle nature or characteristic, and that these natures are inseparable.