The Best PhD and Masters Consulting Company
Characteristics Of A Good Hypothesis
What exactly is a hypothesis.
A hypothesis is a conclusion reached after considering the evidence. This is the first step in any investigation, where the research questions are translated into a prediction. Variables, population, and the relationship between the variables are all included. A research hypothesis is a hypothesis that is tested to see if two or more variables have a relationship. Now let’s have a look at the characteristics of a good hypothesis.
Characteristics of
A good hypothesis has the following characteristics.
Ability To Predict
Closest to things that can be seen, testability, relevant to the issue, techniques that are applicable, new discoveries have been made as a result of this ., harmony & consistency.
- The similarity between the two phenomena.
- Observations from previous studies, current experiences, and feedback from rivals.
- Theories based on science.
- People’s thinking processes are influenced by general patterns.
- A straightforward hypothesis
- Complex Hypothesis
- Hypothesis with a certain direction
- Non-direction Hypothesis
- Null Hypothesis
- Hypothesis of association and chance
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
What is Hypothesis? Definition, Meaning, Characteristics, Sources
- Post last modified: 10 January 2022
- Reading time: 18 mins read
- Post category: Research Methodology
- What is Hypothesis?
Hypothesis is a prediction of the outcome of a study. Hypotheses are drawn from theories and research questions or from direct observations. In fact, a research problem can be formulated as a hypothesis. To test the hypothesis we need to formulate it in terms that can actually be analysed with statistical tools.
As an example, if we want to explore whether using a specific teaching method at school will result in better school marks (research question), the hypothesis could be that the mean school marks of students being taught with that specific teaching method will be higher than of those being taught using other methods.
In this example, we stated a hypothesis about the expected differences between groups. Other hypotheses may refer to correlations between variables.
Table of Content
- 1 What is Hypothesis?
- 2 Hypothesis Definition
- 3 Meaning of Hypothesis
- 4.1 Conceptual Clarity
- 4.2 Need of empirical referents
- 4.3 Hypothesis should be specific
- 4.4 Hypothesis should be within the ambit of the available research techniques
- 4.5 Hypothesis should be consistent with the theory
- 4.6 Hypothesis should be concerned with observable facts and empirical events
- 4.7 Hypothesis should be simple
- 5.1 Observation
- 5.2 Analogies
- 5.4 State of Knowledge
- 5.5 Culture
- 5.6 Continuity of Research
- 6.1 Null Hypothesis
- 6.2 Alternative Hypothesis
Thus, to formulate a hypothesis, we need to refer to the descriptive statistics (such as the mean final marks), and specify a set of conditions about these statistics (such as a difference between the means, or in a different example, a positive or negative correlation). The hypothesis we formulate applies to the population of interest.
The null hypothesis makes a statement that no difference exists (see Pyrczak, 1995, pp. 75-84).
Hypothesis Definition
A hypothesis is ‘a guess or supposition as to the existence of some fact or law which will serve to explain a connection of facts already known to exist.’ – J. E. Creighton & H. R. Smart
Hypothesis is ‘a proposition not known to be definitely true or false, examined for the sake of determining the consequences which would follow from its truth.’ – Max Black
Hypothesis is ‘a proposition which can be put to a test to determine validity and is useful for further research.’ – W. J. Goode and P. K. Hatt
A hypothesis is a proposition, condition or principle which is assumed, perhaps without belief, in order to draw out its logical consequences and by this method to test its accord with facts which are known or may be determined. – Webster’s New International Dictionary of the English Language (1956)
Meaning of Hypothesis
From the above mentioned definitions of hypothesis, its meaning can be explained in the following ways.
- At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data.
- Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event.
- Hypothesis can be a probable answer to the research problem undertaken for study. 4. Hypothesis may not always be true. It can get disproven. In other words, hypothesis need not always be a true proposition.
- Hypothesis, in a sense, is an attempt to present the interrelations that exist in the available data or information.
- Hypothesis is not an individual opinion or community thought. Instead, it is a philosophical means which is to be used for research purpose. Hypothesis is not to be considered as the ultimate objective; rather it is to be taken as the means of explaining scientifically the prevailing situation.
The concept of hypothesis can further be explained with the help of some examples. Lord Keynes, in his theory of national income determination, made a hypothesis about the consumption function. He stated that the consumption expenditure of an individual or an economy as a whole is dependent on the level of income and changes in a certain proportion.
Later, this proposition was proved in the statistical research carried out by Prof. Simon Kuznets. Matthus, while studying the population, formulated a hypothesis that population increases faster than the supply of food grains. Population studies of several countries revealed that this hypothesis is true.
Validation of the Malthus’ hypothesis turned it into a theory and when it was tested in many other countries it became the famous Malthus’ Law of Population. It thus emerges that when a hypothesis is tested and proven, it becomes a theory. The theory, when found true in different times and at different places, becomes the law. Having understood the concept of hypothesis, few hypotheses can be formulated in the areas of commerce and economics.
- Population growth moderates with the rise in per capita income.
- Sales growth is positively linked with the availability of credit.
- Commerce education increases the employability of the graduate students.
- High rates of direct taxes prompt people to evade taxes.
- Good working conditions improve the productivity of employees.
- Advertising is the most effecting way of promoting sales than any other scheme.
- Higher Debt-Equity Ratio increases the probability of insolvency.
- Economic reforms in India have made the public sector banks more efficient and competent.
- Foreign direct investment in India has moved in those sectors which offer higher rate of profit.
- There is no significant association between credit rating and investment of fund.
Characteristics of Hypothesis
Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below:
Conceptual Clarity
Need of empirical referents, hypothesis should be specific, hypothesis should be within the ambit of the available research techniques, hypothesis should be consistent with the theory, hypothesis should be concerned with observable facts and empirical events, hypothesis should be simple.
The concepts used while framing hypothesis should be crystal clear and unambiguous. Such concepts must be clearly defined so that they become lucid and acceptable to everyone. How are the newly developed concepts interrelated and how are they linked with the old one is to be very clear so that the hypothesis framed on their basis also carries the same clarity.
A hypothesis embodying unclear and ambiguous concepts can to a great extent undermine the successful completion of the research work.
A hypothesis can be useful in the research work undertaken only when it has links with some empirical referents. Hypothesis based on moral values and ideals are useless as they cannot be tested. Similarly, hypothesis containing opinions as good and bad or expectation with respect to something are not testable and therefore useless.
For example, ‘current account deficit can be lowered if people change their attitude towards gold’ is a hypothesis encompassing expectation. In case of such a hypothesis, the attitude towards gold is something which cannot clearly be described and therefore a hypothesis which embodies such an unclean thing cannot be tested and proved or disproved. In short, the hypothesis should be linked with some testable referents.
For the successful conduction of research, it is necessary that the hypothesis is specific and presented in a precise manner. Hypothesis which is general, too ambitious and grandiose in scope is not to be made as such hypothesis cannot be easily put to test. A hypothesis is to be based on such concepts which are precise and empirical in nature. A hypothesis should give a clear idea about the indicators which are to be used.
For example, a hypothesis that economic power is increasingly getting concentrated in a few hands in India should enable us to define the concept of economic power. It should be explicated in terms of measurable indicator like income, wealth, etc. Such specificity in the formulation of a hypothesis ensures that the research is practicable and significant.
While framing the hypothesis, the researcher should be aware of the available research techniques and should see that the hypothesis framed is testable on the basis of them. In other words, a hypothesis should be researchable and for this it is important that a due thought has been given to the methods and techniques which can be used to measure the concepts and variables embodied in the hypothesis.
It does not however mean that hypotheses which are not testable with the available techniques of research are not to be made. If the problem is too significant and therefore the hypothesis framed becomes too ambitious and complex, it’s testing becomes possible with the development of new research techniques or the hypothesis itself leads to the development of new research techniques.
A hypothesis must be related to the existing theory or should have a theoretical orientation. The growth of knowledge takes place in the sequence of facts, hypothesis, theory and law or principles. It means the hypothesis should have a correspondence with the existing facts and theory.
If the hypothesis is related to some theory, the research work will enable us to support, modify or refute the existing theory. Theoretical orientation of the hypothesis ensures that it becomes scientifically useful. According to Prof. Goode and Prof. Hatt, research work can contribute to the existing knowledge only when the hypothesis is related with some theory.
This enables us to explain the observed facts and situations and also verify the framed hypothesis. In the words of Prof. Cohen and Prof. Nagel, “hypothesis must be formulated in such a manner that deduction can be made from it and that consequently a decision can be reached as to whether it does or does not explain the facts considered.”
If the research work based on a hypothesis is to be successful, it is necessary that the later is as simple and easy as possible. An ambition of finding out something new may lead the researcher to frame an unrealistic and unclear hypothesis. Such a temptation is to be avoided. Framing a simple, easy and testable hypothesis requires that the researcher is well acquainted with the related concepts.
Sources of Hypothesis
Hypotheses can be derived from various sources. Some of the sources is given below:
Observation
State of knowledge, continuity of research.
Hypotheses can be derived from observation from the observation of price behavior in a market. For example the relationship between the price and demand for an article is hypothesized.
Analogies are another source of useful hypotheses. Julian Huxley has pointed out that casual observations in nature or in the framework of another science may be a fertile source of hypotheses. For example, the hypotheses that similar human types or activities may be found in similar geophysical regions come from plant ecology.
This is one of the main sources of hypotheses. It gives direction to research by stating what is known logical deduction from theory lead to new hypotheses. For example, profit / wealth maximization is considered as the goal of private enterprises. From this assumption various hypotheses are derived’.
An important source of hypotheses is the state of knowledge in any particular science where formal theories exist hypotheses can be deduced. If the hypotheses are rejected theories are scarce hypotheses are generated from conception frameworks.
Another source of hypotheses is the culture on which the researcher was nurtured. Western culture has induced the emergence of sociology as an academic discipline over the past decade, a large part of the hypotheses on American society examined by researchers were connected with violence. This interest is related to the considerable increase in the level of violence in America.
The continuity of research in a field itself constitutes an important source of hypotheses. The rejection of some hypotheses leads to the formulation of new ones capable of explaining dependent variables in subsequent research on the same subject.
Null and Alternative Hypothesis
Null hypothesis.
The hypothesis that are proposed with the intent of receiving a rejection for them are called Null Hypothesis . This requires that we hypothesize the opposite of what is desired to be proved. For example, if we want to show that sales and advertisement expenditure are related, we formulate the null hypothesis that they are not related.
Similarly, if we want to conclude that the new sales training programme is effective, we formulate the null hypothesis that the new training programme is not effective, and if we want to prove that the average wages of skilled workers in town 1 is greater than that of town 2, we formulate the null hypotheses that there is no difference in the average wages of the skilled workers in both the towns.
Since we hypothesize that sales and advertisement are not related, new training programme is not effective and the average wages of skilled workers in both the towns are equal, we call such hypotheses null hypotheses and denote them as H 0 .
Alternative Hypothesis
Rejection of null hypotheses leads to the acceptance of alternative hypothesis . The rejection of null hypothesis indicates that the relationship between variables (e.g., sales and advertisement expenditure) or the difference between means (e.g., wages of skilled workers in town 1 and town 2) or the difference between proportions have statistical significance and the acceptance of the null hypotheses indicates that these differences are due to chance.
As already mentioned, the alternative hypotheses specify that values/relation which the researcher believes hold true. The alternative hypotheses can cover a whole range of values rather than a single point. The alternative hypotheses are denoted by H 1 .
Business Ethics
( Click on Topic to Read )
- What is Ethics?
- What is Business Ethics?
- Values, Norms, Beliefs and Standards in Business Ethics
- Indian Ethos in Management
- Ethical Issues in Marketing
- Ethical Issues in HRM
- Ethical Issues in IT
- Ethical Issues in Production and Operations Management
- Ethical Issues in Finance and Accounting
- What is Corporate Governance?
- What is Ownership Concentration?
- What is Ownership Composition?
- Types of Companies in India
- Internal Corporate Governance
- External Corporate Governance
- Corporate Governance in India
- What is Enterprise Risk Management (ERM)?
- What is Assessment of Risk?
- What is Risk Register?
- Risk Management Committee
Corporate social responsibility (CSR)
- Theories of CSR
- Arguments Against CSR
- Business Case for CSR
- Importance of CSR in India
- Drivers of Corporate Social Responsibility
- Developing a CSR Strategy
- Implement CSR Commitments
- CSR Marketplace
- CSR at Workplace
- Environmental CSR
- CSR with Communities and in Supply Chain
- Community Interventions
- CSR Monitoring
- CSR Reporting
- Voluntary Codes in CSR
- What is Corporate Ethics?
Lean Six Sigma
- What is Six Sigma?
- What is Lean Six Sigma?
- Value and Waste in Lean Six Sigma
- Six Sigma Team
- MAIC Six Sigma
- Six Sigma in Supply Chains
- What is Binomial, Poisson, Normal Distribution?
- What is Sigma Level?
- What is DMAIC in Six Sigma?
- What is DMADV in Six Sigma?
- Six Sigma Project Charter
- Project Decomposition in Six Sigma
- Critical to Quality (CTQ) Six Sigma
- Process Mapping Six Sigma
- Flowchart and SIPOC
- Gage Repeatability and Reproducibility
- Statistical Diagram
- Lean Techniques for Optimisation Flow
- Failure Modes and Effects Analysis (FMEA)
- What is Process Audits?
- Six Sigma Implementation at Ford
- IBM Uses Six Sigma to Drive Behaviour Change
- Research Methodology
- What is Research?
- Sampling Method
Research Methods
- Data Collection in Research
- Methods of Collecting Data
- Application of Business Research
- Levels of Measurement
- What is Sampling?
- Hypothesis Testing
- Research Report
- What is Management?
- Planning in Management
- Decision Making in Management
- What is Controlling?
- What is Coordination?
- What is Staffing?
- Organization Structure
- What is Departmentation?
- Span of Control
- What is Authority?
- Centralization vs Decentralization
- Organizing in Management
- Schools of Management Thought
- Classical Management Approach
- Is Management an Art or Science?
- Who is a Manager?
Operations Research
- What is Operations Research?
- Operation Research Models
- Linear Programming
- Linear Programming Graphic Solution
- Linear Programming Simplex Method
- Linear Programming Artificial Variable Technique
- Duality in Linear Programming
- Transportation Problem Initial Basic Feasible Solution
- Transportation Problem Finding Optimal Solution
- Project Network Analysis with Critical Path Method
- Project Network Analysis Methods
- Project Evaluation and Review Technique (PERT)
- Simulation in Operation Research
- Replacement Models in Operation Research
Operation Management
- What is Strategy?
- What is Operations Strategy?
- Operations Competitive Dimensions
- Operations Strategy Formulation Process
- What is Strategic Fit?
- Strategic Design Process
- Focused Operations Strategy
- Corporate Level Strategy
- Expansion Strategies
- Stability Strategies
- Retrenchment Strategies
- Competitive Advantage
- Strategic Choice and Strategic Alternatives
- What is Production Process?
- What is Process Technology?
- What is Process Improvement?
- Strategic Capacity Management
- Production and Logistics Strategy
- Taxonomy of Supply Chain Strategies
- Factors Considered in Supply Chain Planning
- Operational and Strategic Issues in Global Logistics
- Logistics Outsourcing Strategy
- What is Supply Chain Mapping?
- Supply Chain Process Restructuring
- Points of Differentiation
- Re-engineering Improvement in SCM
- What is Supply Chain Drivers?
- Supply Chain Operations Reference (SCOR) Model
- Customer Service and Cost Trade Off
- Internal and External Performance Measures
- Linking Supply Chain and Business Performance
- Netflix’s Niche Focused Strategy
- Disney and Pixar Merger
- Process Planning at Mcdonald’s
Service Operations Management
- What is Service?
- What is Service Operations Management?
- What is Service Design?
- Service Design Process
- Service Delivery
- What is Service Quality?
- Gap Model of Service Quality
- Juran Trilogy
- Service Performance Measurement
- Service Decoupling
- IT Service Operation
- Service Operations Management in Different Sector
Procurement Management
- What is Procurement Management?
- Procurement Negotiation
- Types of Requisition
- RFX in Procurement
- What is Purchasing Cycle?
- Vendor Managed Inventory
- Internal Conflict During Purchasing Operation
- Spend Analysis in Procurement
- Sourcing in Procurement
- Supplier Evaluation and Selection in Procurement
- Blacklisting of Suppliers in Procurement
- Total Cost of Ownership in Procurement
- Incoterms in Procurement
- Documents Used in International Procurement
- Transportation and Logistics Strategy
- What is Capital Equipment?
- Procurement Process of Capital Equipment
- Acquisition of Technology in Procurement
- What is E-Procurement?
- E-marketplace and Online Catalogues
- Fixed Price and Cost Reimbursement Contracts
- Contract Cancellation in Procurement
- Ethics in Procurement
- Legal Aspects of Procurement
- Global Sourcing in Procurement
- Intermediaries and Countertrade in Procurement
Strategic Management
- What is Strategic Management?
- What is Value Chain Analysis?
- Mission Statement
- Business Level Strategy
- What is SWOT Analysis?
- What is Competitive Advantage?
- What is Vision?
- What is Ansoff Matrix?
- Prahalad and Gary Hammel
- Strategic Management In Global Environment
- Competitor Analysis Framework
- Competitive Rivalry Analysis
- Competitive Dynamics
- What is Competitive Rivalry?
- Five Competitive Forces That Shape Strategy
- What is PESTLE Analysis?
- Fragmentation and Consolidation Of Industries
- What is Technology Life Cycle?
- What is Diversification Strategy?
- What is Corporate Restructuring Strategy?
- Resources and Capabilities of Organization
- Role of Leaders In Functional-Level Strategic Management
- Functional Structure In Functional Level Strategy Formulation
- Information And Control System
- What is Strategy Gap Analysis?
- Issues In Strategy Implementation
- Matrix Organizational Structure
- What is Strategic Management Process?
Supply Chain
- What is Supply Chain Management?
- Supply Chain Planning and Measuring Strategy Performance
- What is Warehousing?
- What is Packaging?
- What is Inventory Management?
- What is Material Handling?
- What is Order Picking?
- Receiving and Dispatch, Processes
- What is Warehouse Design?
- What is Warehousing Costs?
You Might Also Like
Sampling process and characteristics of good sample design, what is research design features, components, what is research design types, what is research methodology, what is measure of dispersion, types of charts used in data analysis, data analysis in research, types of errors affecting research design, what is sample size determination, formula, determining,, cross-sectional and longitudinal research, what is literature review importance, functions, process,, leave a reply cancel reply.
You must be logged in to post a comment.
World's Best Online Courses at One Place
We’ve spent the time in finding, so you can spend your time in learning
Digital Marketing
Personal growth.
Development
Characteristics & Qualities of a Good Hypothesis
A good hypothesis possesses the following certain attributes.
Power of Prediction
One of the valuable attribute of a good hypothesis is to predict for future. It not only clears the present problematic situation but also predict for the future that what would be happened in the coming time. So, hypothesis is a best guide of research activity due to power of prediction.
Closest to observable things
A hypothesis must have close contact with observable things. It does not believe on air castles but it is based on observation. Those things and objects which we cannot observe, for that hypothesis cannot be formulated. The verification of a hypothesis is based on observable things.
A hypothesis should be so dabble to every layman, P.V young says, “A hypothesis wo0uld be simple, if a researcher has more in sight towards the problem”. W-ocean stated that, “A hypothesis should be as sharp as razor’s blade”. So, a good hypothesis must be simple and have no complexity.
A hypothesis must be conceptually clear. It should be clear from ambiguous information’s. The terminology used in it must be clear and acceptable to everyone.
Testability
A good hypothesis should be tested empirically. It should be stated and formulated after verification and deep observation. Thus testability is the primary feature of a good hypothesis.
Relevant to Problem
If a hypothesis is relevant to a particular problem, it would be considered as good one. A hypothesis is guidance for the identification and solution of the problem, so it must be accordance to the problem.
It should be formulated for a particular and specific problem. It should not include generalization. If generalization exists, then a hypothesis cannot reach to the correct conclusions.
Relevant to available Techniques
Hypothesis must be relevant to the techniques which is available for testing. A researcher must know about the workable techniques before formulating a hypothesis.
Fruitful for new Discoveries
It should be able to provide new suggestions and ways of knowledge. It must create new discoveries of knowledge J.S. Mill, one of the eminent researcher says that “Hypothesis is the best source of new knowledge it creates new ways of discoveries”.
Consistency & Harmony
Internal harmony and consistency is a major characteristic of good hypothesis. It should be out of contradictions and conflicts. There must be a close relationship between variables which one is dependent on other.
Related Articles
Kinds of Legislation, Supreme Legislation & Subordinate Legislation
Subject index
In an increasingly data-driven world, it is more important than ever for students as well as professionals to better understand basic statistical concepts. 100 Questions (and Answers) About Statistics addresses the essential questions that students ask about statistics in a concise and accessible way. It is perfect for instructors, students, and practitioners as a supplement to more comprehensive materials, or as a desk reference with quick answers to the most frequently asked questions.
What Are the Characteristics of a Good Hypothesis?
- By: Neil J. Salkind
- In: 100 Questions (and Answers) About Statistics
- Chapter DOI: https:// doi. org/10.4135/9781483372334.n61
- Subject: Engineering , Mathematics
- Keywords: students
- Show page numbers Hide page numbers
A well-written and well-thought-out hypothesis can make all the difference between a successful and unsuccessful research effort. This is primarily because a well-written hypothesis reflects a well-conceived research project based on an adequate review of the literature and a logical proposition about the relationship between variables.
Here is a summary of the characteristics of a good hypothesis.
First, a good hypothesis is stated in declarative form and not as a question. For example, “Are retention rates for first-year students at state universities low because students run out of money?” could, with some review of the literature, become, “Retention rates for first-year students at state universities are lower than the average because students cannot afford to return for the second semester due to a shortage of funds.” The hypothesis becomes a direct and clear statement.
Second, a good hypothesis proposes a relationship between variables. In the example we just provided, the variables are whether or not the student remains in school (retention) and the reason for not remaining in school if the student leaves. In this example, the idea that is being tested is that new students do not remain in school because school becomes too expensive.
Third, a good hypothesis reflects the literature or the results of previous studies on which the hypothesis is based. This is where good old-fashioned detective work at the library or online provides the information needed to best understand the possible relationships that might be found and their importance to the overall research mission.
Fourth, a good hypothesis is brief and to the point. It is not a review of the literature or a rationale for the hypothesis itself. Rather it is a concise and clear statement of the relationship between variables such that any other person with some familiarity with the subject matter could read the hypothesis and fully understand the central purpose of the research study.
Finally, a good hypothesis is testable. The variables are clearly understood, as is their proposed relationship. In our example, the central question is the relationship between continued enrollment in school and why [Page 126] that may not occur. The hypothesis narrows that question to look specifically at one reason why continued enrollment may not occur. Given the way the hypothesis is stated, it allows the question to be tested and the results and new knowledge gained to be applied to the next hypothesis and subsequent testing.
More questions? See questions #60 , #63 , and #64 .
What Is a Hypothesis, and Why Is It Important in Scientific Research?
How Do a Sample and a Population Differ From One Another?
Sign in to access this content
Get a 30 day free trial, more like this, sage recommends.
We found other relevant content for you on other Sage platforms.
Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches
- Sign in/register
Navigating away from this page will delete your results
Please save your results to "My Self-Assessments" in your profile before navigating away from this page.
Sign in to my profile
Please sign into your institution before accessing your profile
Sign up for a free trial and experience all Sage Learning Resources have to offer.
You must have a valid academic email address to sign up.
Get off-campus access
- View or download all content my institution has access to.
Sign up for a free trial and experience all Sage Learning Resources has to offer.
- view my profile
- view my lists
2.4 Developing a Hypothesis
Learning objectives.
- Distinguish between a theory and a hypothesis.
- Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
- Understand the characteristics of a good hypothesis.
Theories and Hypotheses
Before describing how to develop a hypothesis it is imporant to distinguish betwee a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition. He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.
Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.
A hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observation before we can develop a broader theory.
Theories and hypotheses always have this if-then relationship. “ If drive theory is correct, then cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.
But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this question is an interesting one on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.
Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [1] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the number of examples they bring to mind and the other was that people base their judgments on how easily they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.
Theory Testing
The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method (although this term is much more likely to be used by philosophers of science than by scientists themselves). A researcher begins with a set of phenomena and either constructs a theory to explain or interpret them or chooses an existing theory to work with. He or she then makes a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researcher then conducts an empirical study to test the hypothesis. Finally, he or she reevaluates the theory in light of the new results and revises it if necessary. This process is usually conceptualized as a cycle because the researcher can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As Figure 2.2 shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.
Figure 2.2 Hypothetico-Deductive Method Combined With the General Model of Scientific Research in Psychology Together they form a model of theoretically motivated research.
As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [2] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans (Zajonc & Sales, 1966) [3] in many other studies afterward).
Incorporating Theory into Your Research
When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.
To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.
Characteristics of a Good Hypothesis
There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use inductive reasoning which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that really it does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.
Key Takeaways
- A theory is broad in nature and explains larger bodies of data. A hypothesis is more specific and makes a prediction about the outcome of a particular study.
- Working with theories is not “icing on the cake.” It is a basic ingredient of psychological research.
- Like other scientists, psychologists use the hypothetico-deductive method. They construct theories to explain or interpret phenomena (or work with existing theories), derive hypotheses from their theories, test the hypotheses, and then reevaluate the theories in light of the new results.
- Practice: Find a recent empirical research report in a professional journal. Read the introduction and highlight in different colors descriptions of theories and hypotheses.
- Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61 , 195–202. ↵
- Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach. Journal of Personality and Social Psychology, 13 , 83–92. ↵
- Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵
Share This Book
- Increase Font Size
- Scientific Methods
What is Hypothesis?
We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.
A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.
Characteristics of Hypothesis
Following are the characteristics of the hypothesis:
- The hypothesis should be clear and precise to consider it to be reliable.
- If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
- The hypothesis must be specific and should have scope for conducting more tests.
- The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.
Sources of Hypothesis
Following are the sources of hypothesis:
- The resemblance between the phenomenon.
- Observations from past studies, present-day experiences and from the competitors.
- Scientific theories.
- General patterns that influence the thinking process of people.
Types of Hypothesis
There are six forms of hypothesis and they are:
- Simple hypothesis
- Complex hypothesis
- Directional hypothesis
- Non-directional hypothesis
- Null hypothesis
- Associative and casual hypothesis
Simple Hypothesis
It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.
Complex Hypothesis
It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.
Directional Hypothesis
It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.
Non-directional Hypothesis
It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.
Null Hypothesis
It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.
Associative and Causal Hypothesis
Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.
Examples of Hypothesis
Following are the examples of hypotheses based on their types:
- Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
- All lilies have the same number of petals is an example of a null hypothesis.
- If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.
Functions of Hypothesis
Following are the functions performed by the hypothesis:
- Hypothesis helps in making an observation and experiments possible.
- It becomes the start point for the investigation.
- Hypothesis helps in verifying the observations.
- It helps in directing the inquiries in the right direction.
How will Hypothesis help in the Scientific Method?
Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:
- Formation of question
- Doing background research
- Creation of hypothesis
- Designing an experiment
- Collection of data
- Result analysis
- Summarizing the experiment
- Communicating the results
Frequently Asked Questions – FAQs
What is hypothesis.
A hypothesis is an assumption made based on some evidence.
Give an example of simple hypothesis?
What are the types of hypothesis.
Types of hypothesis are:
- Associative and Casual hypothesis
State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.
Define complex hypothesis..
A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.
Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!
Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz
Visit BYJU’S for all Physics related queries and study materials
Your result is as below
Request OTP on Voice Call
Leave a Comment Cancel reply
Your Mobile number and Email id will not be published. Required fields are marked *
Post My Comment
Register with BYJU'S & Download Free PDFs
Register with byju's & watch live videos.
Research Hypothesis – Types, Examples Characteristics, and Sources
Research hypothesis.
A research hypothesis is referred to as a scientific hypothesis. This is a clear, specific, and testable statement that predicts the expected result in a scientific study. It is a prediction, reasonable guess, and logical supposition about the relationship between the variables. A research hypothesis is an integral and central part of research whether it is exploratory or explanatory, qualitative or quantitative. It creates the base of scientific experiments. So, you must be very careful while building any hypothesis.
A hypothesis can be correct or wrong. It is tested through experiments or research to determine whether it is correct or incorrect.
Functions of research hypothesis
There are major functions of research hypothesis that are as follow:
- It helps in making observations and experiments possible.
- It is the basic point for the research.
- It verifies the observations.
- It leads the inquiries in the right regulation.
- It provides the extension of knowledge.
- It helps to explore different aspects of the research.
- It introduces different research techniques.
- It ensures the precision and accuracy of the results of the research.
- It enables the researcher to be focused. Because without a hypothesis, he may focus on unnecessary aspects and wastes his resources like time, money, and effort.
Sources of hypothesis
Following are the sources of the hypothesis:
- Scientific theories
- Personal experience
- Observation
- Imagination and thinking
- Previous study
- General patterns
Characteristics of an effective research hypothesis
Following are the characteristics of an effective research hypothesis:
- It must be logical.
- It must be simple and clear.
- It needs to be precise.
- It must identify the research objectives.
- It must be empirically testable with experimentation and research.
- It must be manageable.
- It must be relevant and specific to the theme of the research.
- It must be predictable.
- It must be falsifiable.
- It must be neither specific nor general.
- It must be considered valuable even if it proves false.
Types of research hypothesis
Following are the types of research hypotheses.
- Simple hypothesis
It shows a relationship between a single dependent variable and an independent variable. For instance, if you take in more carbs and fats, you will gain obesity. Here taking more carbs and fats are an independent variable and gaining weight is the dependent variable.
- Complex hypothesis
It predicts the relationship between two or more independent variables and dependent variables. For example, we can say that taking in more carbs and fats can cause obesity along with other problems like high blood pressure, heart disease, and so on.
- Directional hypothesis
Typically, directional hypotheses are derived from theory. This type of hypothesis shows the researcher’s intellectual commitment towards a specific outcome. The researcher predicts the existence and nature of a relationship between variables.
- Non-directional hypothesis
The non-directional hypothesis is used when there is no theory and the findings of studies are contradictory. It shows the relationship between two variables but does not set down the expected direction or nature of the relationship.
- Null hypothesis
Null hypotheses are made when there is no empirical and adequate theoretical information to show a hypothesis. The null hypothesis negates the relationship between variables. It is denoted by Ho. This hypothesis is made when the researcher wants to reject or disapprove the null hypothesis. It is contrary to what an experimenter or investigator expects. The purpose is to confirm the existence of a relationship between the variables.
The null hypothesis can be:
- Associative or causal
- Simple or complex
1. Alternative hypothesis
When a hypothesis is rejected, then another hypothesis is made to be tested and show the desired results. This is called an alternative hypothesis. It is opposite to the null hypothesis and is made to disprove that hypothesis. This hypothesis is denoted by H1.
2. Statistical hypothesis
As the name mentions, this hypothesis has the quality to be verified statistically. It is tested by using quantitative techniques. The variables in this hypothesis are quantifiable and can also transform into quantifiable indicators to verify it statistically.
- Empirical hypothesis
This hypothesis is used when a theory is tested with observation and experiment. It is just a notion or idea. This hypothesis goes through trial and error by changing independent variables. The series of trial and error helps to find the best result. The outcomes of these experiments can be proven over time.
- Associative and causal hypothesis
The associative hypothesis shows interdependency between variables. Any change in one variable causes the change in another variable. Whereas, the causal hypothesis shows a cause and effect between variables.
How to formulate a research hypothesis
There are some important points you must consider while formulating a hypothesis:
- Ask a question
The first and foremost thing for creating a research hypothesis is to generate a research question. The question should be specific, focused, and researchable within the limitations of your project.
- Do preliminary research
Now try to find the answer to your question. The initial answer must be based on previous knowledge about the topic. Concern theories and previous studies and try to form assumptions about what you will find in your research.
Create a conceptual framework about different variables you are going to study and the relationships between them.
- Formulate the hypothesis
Now you have an idea of what you are expecting to find. Make a clear and concise answer to the question.
- Refine your hypothesis
Now check whether your hypothesis is testable. There must be clear definitions of your hypothesis while phrasing. It should contain:
- The relevant variables
The particular group being studied.
The predicted result of the analysis or experiment
- Phrase your hypothesis in three ways
To recognize the variables, write a prediction in (if-then) form. Like, if a particular action is taken, a certain result is expected. The first part of the phrase shows the independent variable while the second part shows the dependent variable.
- Write a null hypothesis
If the research requires statistical hypothesis testing, you must have to make a null hypothesis and an alternative hypothesis.
Now test your hypothesis through observations, techniques, and experiments by keeping necessary things and resources in consideration.
Related Posts:
- Correlational Research Design [Examples, Types, Advantages, Disadvantages, Characteristics]
- Which of the following is the first step in hypothesis testing?
- Quantitative research Examples, Methods, Characteristics, Advantages, Disadvantages
- Which of the following is considered one of the earliest literary sources in human history?
- Understanding metrics (bounce rate, session duration, traffic sources) MCQs in digital marketing
- Sources of Islamic law (Islamic Study) MCQs
You must be logged in to post a comment.
- Science, Tech, Math ›
- Chemistry ›
- Scientific Method ›
What Are the Elements of a Good Hypothesis?
Hero Images/Getty Images
- Scientific Method
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable . While you could consider any prediction of an outcome to be a type of hypothesis, a good hypothesis is one you can test using the scientific method. In other words, you want to propose a hypothesis to use as the basis for an experiment.
Cause and Effect or 'If, Then' Relationships
A good experimental hypothesis can be written as an if, then statement to establish cause and effect on the variables. If you make a change to the independent variable, then the dependent variable will respond. Here's an example of a hypothesis:
If you increase the duration of light, (then) corn plants will grow more each day.
The hypothesis establishes two variables, length of light exposure, and the rate of plant growth. An experiment could be designed to test whether the rate of growth depends on the duration of light. The duration of light is the independent variable, which you can control in an experiment . The rate of plant growth is the dependent variable, which you can measure and record as data in an experiment.
Key Points of Hypothesis
When you have an idea for a hypothesis, it may help to write it out in several different ways. Review your choices and select a hypothesis that accurately describes what you are testing.
- Does the hypothesis relate an independent and dependent variable? Can you identify the variables?
- Can you test the hypothesis? In other words, could you design an experiment that would allow you to establish or disprove a relationship between the variables?
- Would your experiment be safe and ethical?
- Is there a simpler or more precise way to state the hypothesis? If so, rewrite it.
What If the Hypothesis Is Incorrect?
It's not wrong or bad if the hypothesis is not supported or is incorrect. Actually, this outcome may tell you more about a relationship between the variables than if the hypothesis is supported. You may intentionally write your hypothesis as a null hypothesis or no-difference hypothesis to establish a relationship between the variables.
For example, the hypothesis:
The rate of corn plant growth does not depend on the duration of light.
This can be tested by exposing corn plants to different length "days" and measuring the rate of plant growth. A statistical test can be applied to measure how well the data support the hypothesis. If the hypothesis is not supported, then you have evidence of a relationship between the variables. It's easier to establish cause and effect by testing whether "no effect" is found. Alternatively, if the null hypothesis is supported, then you have shown the variables are not related. Either way, your experiment is a success.
Need more examples of how to write a hypothesis ? Here you go:
- If you turn out all the lights, you will fall asleep faster. (Think: How would you test it?)
- If you drop different objects, they will fall at the same rate.
- If you eat only fast food, then you will gain weight.
- If you use cruise control, then your car will get better gas mileage.
- If you apply a top coat, then your manicure will last longer.
- If you turn the lights on and off rapidly, then the bulb will burn out faster.
- What Is a Testable Hypothesis?
- What Is a Hypothesis? (Science)
- What Are Examples of a Hypothesis?
- Scientific Hypothesis Examples
- Six Steps of the Scientific Method
- Scientific Method Flow Chart
- Null Hypothesis Examples
- Understanding Simple vs Controlled Experiments
- Scientific Method Vocabulary Terms
- Scientific Variable
- What Is an Experimental Constant?
- What Is a Controlled Experiment?
- What Is the Difference Between a Control Variable and Control Group?
- DRY MIX Experiment Variables Acronym
- Random Error vs. Systematic Error
- The Role of a Controlled Variable in an Experiment
IMAGES
COMMENTS
Hypothesis with a Direction It demonstrates a researcher’s intellect and commitment to a specific objective. The nature of the link between the variables can also be predicted. Youngsters aged four who eat good food throughout a five-year period, for example, have better IQ scores than children who do not eat proper food.
Jan 10, 2022 · Characteristics of Hypothesis. Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below: Conceptual Clarity; Need of empirical ...
A hypothesis should be so dabble to every layman, P.V young says, “A hypothesis wo0uld be simple, if a researcher has more in sight towards the problem”. W-ocean stated that, “A hypothesis should be as sharp as razor’s blade”. So, a good hypothesis must be simple and have no complexity. Clarity. A hypothesis must be conceptually clear.
This is primarily because a well-written hypothesis reflects a well-conceived research project based on an adequate review of the literature and a logical proposition about the relationship between variables. Here is a summary of the characteristics of a good hypothesis. First, a good hypothesis is stated in declarative form and not as a question.
Characteristics of a Good Hypothesis. There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable. We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm ...
Feb 23, 2010 · Good Hypothesis : Poor Hypothesis: When there is less oxygen in the water, rainbow trout suffer more lice. Kristin says: "This hypothesis is good because it is testable, simple, written as a statement, and establishes the participants (trout), variables (oxygen in water, and numbers of lice), and predicts effect (as oxygen levels go down, the numbers of lice go up)."
A good hypothesis ensures that the sample is readily approachable. Hypothesis should state relationship between variables, if it happens to be a relational hypothesis. 10. A good hypothesis indicates clearly the role of different variables involved in the study. 11. A good hypothesis maintains a very apparent distinction with what is called ...
Following are the characteristics of the hypothesis: The hypothesis should be clear and precise to consider it to be reliable. If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables. The hypothesis must be specific and should have scope for conducting more tests.
Research Hypothesis. A research hypothesis is referred to as a scientific hypothesis. This is a clear, specific, and testable statement that predicts the expected result in a scientific study. It is a prediction, reasonable guess, and logical supposition about the relationship between the variables.
Jul 27, 2019 · A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable. While you could consider any prediction of an outcome to be a type of hypothesis, a good hypothesis is one you can test using the scientific method.