- Privacy Policy
Home » Variables in Research – Definition, Types and Examples
Variables in Research – Definition, Types and Examples
Table of Contents
In research, variables are critical components that represent the characteristics or attributes being studied. They are the elements that researchers measure, control, or manipulate to observe their effects on other variables, ultimately aiming to answer research questions or test hypotheses. Variables are central to both quantitative and qualitative research, enabling scientists to gather data and draw meaningful conclusions.
Variables in Research
A variable is a characteristic, attribute, or value that can change or vary across participants, objects, or conditions within a research study. Variables allow researchers to quantify or categorize aspects of the subject under investigation, serving as the foundation for data collection and analysis. Variables may represent observable qualities like age or income, as well as abstract constructs like intelligence or satisfaction.
Key Features of Variables in Research :
- Measurability : Variables must be quantifiable or classifiable for observation.
- Variability : Variables can differ among individuals, groups, or experimental conditions.
- Relevance : Variables should align with the research objectives to ensure meaningful results.
Types of Variables in Research
Research variables are typically classified into several types based on their roles, characteristics, and nature of measurement. The primary types include independent variables , dependent variables , extraneous variables , and control variables , among others.
1. Independent Variable (IV)
Definition : An independent variable is the variable that is manipulated or controlled by the researcher to observe its effect on the dependent variable. The independent variable is often the “cause” in a cause-and-effect relationship.
Characteristics :
- Controlled or manipulated by the researcher.
- Its changes are intended to produce an effect on another variable.
- Also known as a predictor or explanatory variable.
Examples of Independent Variables :
- Treatment Type : Different types of medication or therapy administered to test their effects on patients.
- Study Hours : Number of hours spent studying in an experiment examining its impact on test scores.
- Advertising Method : Types of advertising methods used to determine their effect on consumer interest.
Example Scenario : In an experiment studying the effect of sleep on cognitive performance, the amount of sleep (e.g., 4, 6, or 8 hours) is the independent variable, as it is controlled by the researcher to observe its impact on cognitive performance.
2. Dependent Variable (DV)
Definition : The dependent variable is the outcome or effect that is measured in response to changes in the independent variable. It is the “effect” in a cause-and-effect relationship and is influenced by the independent variable.
- Dependent on the independent variable.
- Also known as the outcome or response variable.
- Changes in the dependent variable are observed to determine the effect of the independent variable.
Examples of Dependent Variables :
- Test Scores : Used to measure the impact of study hours (IV) on academic performance.
- Blood Pressure : Measured to observe the effects of different medications (IV) on blood pressure levels.
- Sales Volume : Analyzed to determine the impact of advertising methods (IV) on sales.
Example Scenario : In a study examining the impact of exercise on weight loss, weight loss is the dependent variable because it is expected to change in response to different levels or types of exercise (independent variable).
3. Extraneous Variable
Definition : Extraneous variables are additional variables that are not the main focus of a study but could influence the relationship between the independent and dependent variables if not controlled. They can introduce bias and affect the study’s internal validity.
- Not directly related to the hypothesis.
- Can potentially impact the dependent variable if not controlled.
- Should be minimized or controlled to prevent interference.
Examples of Extraneous Variables :
- Room Temperature : In an experiment on cognitive performance, variations in room temperature could influence participants’ concentration levels.
- Participant Mood : In a study examining the effects of a new teaching method, a participant’s mood could influence their engagement and performance.
- Time of Day : In research on reaction times, the time of day may affect participant alertness and thus reaction speed.
Example Scenario : In a study testing the effect of a new diet on weight loss, extraneous variables such as participants’ exercise habits or stress levels could impact the outcome, potentially confounding the relationship between the diet (IV) and weight loss (DV).
4. Control Variable
Definition : Control variables are variables that are intentionally kept constant or controlled throughout a study to ensure that they do not influence the dependent variable. By controlling these variables, researchers isolate the effects of the independent variable on the dependent variable.
- Remain constant across all conditions.
- Ensure that changes in the dependent variable are due to the independent variable alone.
- Increase the reliability of the results by reducing potential confounding factors.
Examples of Control Variables :
- Room Lighting : Keeping lighting constant in an experiment on reading comprehension.
- Equipment Type : Using the same equipment across experimental conditions to ensure consistency.
- Participant Age Range : Keeping the age range of participants within a specific bracket to control for age-related effects.
Example Scenario : In an experiment studying the effect of study methods on test scores, controlling the time of day the test is taken would help to ensure that test performance is not influenced by participant alertness at different times.
5. Moderator Variable
Definition : A moderator variable is a variable that affects the strength or direction of the relationship between the independent and dependent variables. It reveals how the relationship between variables changes under different conditions.
- Influences the relationship between IV and DV without being directly manipulated.
- Helps identify for whom or under what conditions an effect is strongest.
- Used to understand context-dependent effects.
Examples of Moderator Variables :
- Age : In a study on exercise and mental health, age may moderate the effect, with exercise benefiting younger adults more than older ones.
- Income Level : In research on education and career success, income level may moderate the relationship by impacting access to resources.
- Social Support : In a study on stress and job performance, social support may strengthen or weaken the impact of stress.
Example Scenario : In a study examining the effect of workload on job satisfaction, social support might act as a moderator variable. High social support could weaken the negative impact of workload on job satisfaction, while low support could intensify it.
6. Mediator Variable
Definition : A mediator variable explains the process through which the independent variable influences the dependent variable. It acts as a “middle link” in the causal chain, showing how or why an effect occurs.
- Provides insight into the mechanism of an effect.
- Positioned between the IV and DV in the causal pathway.
- Identified through statistical analysis to explain mediation effects.
Examples of Mediator Variables :
- Job Satisfaction : In a study on salary and employee retention, job satisfaction may mediate the relationship, as higher salary might improve satisfaction, leading to higher retention.
- Stress Levels : In research on workload and health outcomes, stress may mediate the relationship, with higher workload leading to increased stress, which in turn affects health.
- Self-Efficacy : In a study on training and job performance, self-efficacy may act as a mediator by showing how training improves confidence, which leads to better performance.
Example Scenario : In a study examining the impact of education level on career success, self-confidence could act as a mediator. Higher education might boost self-confidence, which in turn leads to greater career success.
Examples of Variables in Real Research
- Independent Variable : Type of teaching method.
- Dependent Variable : Student test scores.
- Control Variable : Class size and subject matter.
- Moderator Variable : Student motivation level.
- Independent Variable : Dosage of medication.
- Dependent Variable : Patient blood pressure.
- Extraneous Variable : Patient diet and exercise habits.
- Control Variable : Administration time.
- Independent Variable : Sleep duration.
- Dependent Variable : Cognitive performance.
- Mediator Variable : Alertness levels.
- Moderator Variable : Participant age.
Variables are fundamental elements of research, serving as the building blocks for hypotheses, measurements, and analyses. By understanding different types of variables—including independent, dependent, control, extraneous, moderator, and mediator variables—researchers can design studies that accurately capture the effects and relationships they aim to explore. Proper use of variables enhances the reliability and validity of findings, leading to more meaningful contributions to scientific knowledge.
- Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . SAGE Publications.
- Trochim, W. M., & Donnelly, J. P. (2008). The Research Methods Knowledge Base . Cengage Learning.
- Babbie, E. (2016). The Practice of Social Research . Cengage Learning.
- Kerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research . Harcourt College Publishers.
- Punch, K. F. (2013). Introduction to Social Research: Quantitative and Qualitative Approaches . SAGE Publications.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Intervening Variable – Definition, Types and...
Nominal Variable – Definition, Purpose and...
Discrete Variable – Definition, Types and...
Continuous Variable – Definition, Types and...
Ordinal Variable – Definition, Purpose and...
Composite Variable – Definition, Types and...
Work With Us
Private Coaching
Done-For-You
Short Courses
Client Reviews
Free Resources
What (exactly) are research variables?
Independent, dependent and control variables and more – explained simply .
By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023
Overview: Variables In Research
What (exactly) is a variable.
The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.
Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:
- How someone’s age impacts their sleep quality
- How different teaching methods impact learning outcomes
- How diet impacts weight (gain or loss)
As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…
The “Big 3” Variables
Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:
- Independent variables (IV)
- Dependant variables (DV)
- Control variables
What is an independent variable?
Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.
For example:
- Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
- Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
- Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).
It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.
Need a helping hand?
What is a dependent variable?
While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.
Keeping with the previous example, let’s look at some dependent variables in action:
- Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
- Students’ scores (DV) could be impacted by teaching methods (IV)
- Weight gain or loss (DV) could be impacted by diet (IV)
In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.
As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.
To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!
As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.
What is a control variable?
In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂
As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.
Some examples of variables that you may need to control include:
- Temperature
- Time of day
- Noise or distractions
Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.
Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!
Other types of variables
As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.
- Moderating variables
- Mediating variables
- Confounding variables
- Latent variables
Let’s jump into it…
What is a moderating variable?
A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).
For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.
It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.
What is a mediating variable?
Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.
Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.
In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.
What is a confounding variable?
A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:
- It must be correlated with the independent variable (this can be causal or not)
- It must have a causal impact on the dependent variable (i.e., influence the DV)
Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.
Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.
What is a latent variable?
Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.
For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:
- Emotional intelligence
- Quality of life
- Business confidence
- Ease of use
One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!
Let’s recap
In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .
To recap, we’ve explored:
- Independent variables (the “cause”)
- Dependent variables (the “effect”)
- Control variables (the variable that’s not allowed to vary)
If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .
Learn More About Methodology
How To Choose A Tutor For Your Dissertation
Hiring the right tutor for your dissertation or thesis can make the difference between passing and failing. Here’s what you need to consider.
5 Signs You Need A Dissertation Helper
Discover the 5 signs that suggest you need a dissertation helper to get unstuck, finish your degree and get your life back.
Triangulation: The Ultimate Credibility Enhancer
Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.
Research Limitations 101: What You Need To Know
Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.
In Vivo Coding 101: Full Explainer With Examples
Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.
📄 FREE TEMPLATES
Research Topic Ideation
Proposal Writing
Literature Review
Methodology & Analysis
Academic Writing
Referencing & Citing
Apps, Tools & Tricks
The Grad Coach Podcast
Very informative, concise and helpful. Thank you
Helping information.Thanks
practical and well-demonstrated
Very helpful and insightful
Submit a Comment Cancel reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
Submit Comment
- Print Friendly
IMAGES
VIDEO